a2 United States Patent

Hicks et al.

US009262193B2

US 9,262,193 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

MULTI-TIER PLATFORM-AS-A-SERVICE
DEPLOYMENT REDUCED TO SINGLE-TIER
ARCHITECTURE FOR DEVELOPMENT

Applicant: Red Hat, Inc., Raleigh, NC (US)

Inventors: Matthew Hicks, Westford, MA (US);
Michael P. McGrath, Schaumburg, 1L
(US); Daniel C. McPherson, Raleigh,
NC (US)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 318 days.

Appl. No.: 13/690,464

Filed: Nov. 30, 2012
Prior Publication Data
US 2014/0157262 Al Jun. 5, 2014
Int. CI.
GOGF 9/455 (2006.01)
GOG6F 9/445 (2006.01)
GO6F 11/36 (2006.01)
U.S. CL
CPC ..o GOG6F 9/45537 (2013.01); GOGF 8/60

(2013.01); GO6F 8/63 (2013.01); GO6F
11/3664 (2013.01)

Field of Classification Search
CPC ... GOG6F 9/45537; GOG6F 8/60; GOG6F 8/63;
GOG6F 11/3664

USPC ittt 718/1, 104
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,645,938 B2* 2/2014 O’Farrelletal. 717/169
2011/0231899 Al* 9/2011 Pulieretal. ... 726/1
2012/0047240 Al* 2/2012 Keohaneetal. 709/221
2013/0227560 Al* 82013 McGrathetal. 718/1
2014/0040883 Al* 2/2014 Tompkins 718/1

OTHER PUBLICATIONS

An Oracle White Paper “Realize the Full Potential of Virtualid Java
Applications” Apr. 2010, pp. 1-12 Online web address: “http://www.
oracle.com/us/products/middleware/application-server/wls-
virtualization-bwp-067889.pdf”.*

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Willy W Huaracha
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A multi-tier platform-as-a-service (PaaS) deployment
reduced to a single-tier architecture for development is dis-
closed. A method of the disclosure includes mapping multiple
tiers of a PaaS system to a consolidated environment execut-
able on a virtual machine (VM), wherein networking stacks
of'the VM maintain a separation between the multiple tiers in
the consolidated environment, and providing the consoli-
dated environment as a development instance of the PaaS
system for execution on the VM, the consolidated environ-
ment facilitating testing of code changes to the PaaS system.

20 Claims, 5 Drawing Sheets

Map tiers of a multi-tier PaaS system to a single cansolidated environment
axecutable on a single VM, wherein networking stacks of the VM maintain a
functional separation betwesn the multiple tiers in the single consolidated
environment

310

l

Provide the single consolidated environment as a Paa$ instance to execute on a
VM

320
Receive a code change to the Paa$ instance exscuting in the VM
Synchronize the code change to the Paa$ Instance
40

l

Identify packages of the Paa$S instance to be rebuilt because of the code change
350

l

Rehuild the identified packages of the Paa$ instancs

l

Launch the Paa$S Instance with the rebullt packages In the VM
370

US 9,262,193 B2

Sheet 1 of 5

Feb. 16, 2016

U.S. Patent

| ainbi4

aauejsu|
JUsBWUOIAUT
juswdojaaaq

091 WwelsAg JapInoid pnojD

GO wolsAs E.o.an_?mo w.mmn_

5128
Moysoday

1821 10

(2%
waysAg uonelbaiu] snonupuo?

(6) T
Aoysoday
8p0oo 924N0S

0ET
(16) waysAg juawabeuepy apoD sainog

Ll
uoneo|ddy
Jasmolg

Zi1 Joup3

\K 011 8218 Wwalo

(om) (NdY)
¥ WaisAs 7ol wasAs
Juswabeuepy uswabeuep

piing abexoed

02T JoAles JuswuoliAug Juswdojeas(

US 9,262,193 B2

Sheet 2 of 5

Feb. 16, 2016

U.S. Patent

Z 91nb14
002 duIyoey [enuiA
50z sougjsul juowuoaug juewdoereg seed T T _
| T4
0B)S BupomeN _
_ HSS/dL1IH _
|
_ 0€ Johe opoN 0cze Johe Joyoug "
_ _ . _ _
_ -
. |
_ GEZ 9PON _n_<m._wm_em_ Aﬂv 072 Jake aio _
| 0S¢ ¥oels
| BumOMSN PUPOmeN |
e dlI1H _
_ Buibessap
| _

U.S. Patent Feb. 16, 2016 Sheet 3 of 5 US 9,262,193 B2

Map tiers of a multi-tier PaaS system to a single consolidated environment
executable on a single VM, wherein networking stacks of the VM maintain a
functional separation between the multiple tiers in the single consolidated
environment

310

Provide the single consolidated environment as a Paa$S instance to execute on a

VM
320
Receive a code change to the PaaS instance executing in the VM
330
Synchronize the code change to the PaaS instance
340

Identify packages of the PaaS instance to be rebuilt because of the code change

350
Rebuild the identified packages of the PaaS instance
360
Launch the Paa$S instance with the rebuilt packages in the VM
370

Figure 3

U.S. Patent Feb. 16, 2016 Sheet 4 of 5 US 9,262,193 B2

_1

Receive a patch including one or more code changes to a PaaS product
410
Initiate a Continuous Integration (Cl) system to test the patch
420

Launch a PaaS development environment instance of the PaaS product with the
one or more code changes in a single VM, where the PaaS development
environment instance includes multiple tiers of the PaaS product functionally
separated by networking stacks of the VM

430

Test the PaaS development environment instance using a plurality of tests
configured by the Cl system

440
Any tests fail?
450
y
Reject the patch and send back to Add the patch to the mainline PaaS
the originating programmer product development repository
460 470

Figure 4

U.S. Patent Feb. 16, 2016 Sheet 5 of 5 US 9,262,193 B2

500
N\ e

»— 502 V- 510
PROCESSOR
> - | VIDEQ DISPLAY
PROCESSING LOGIC / 526
Paa$ Development |1 530
System 105 ~ L~ 512
— 504 < I ALPHA-NUMERIC
INPUT DEVICE
MAIN MEMORY
INSTRUCTIONS
Paa$ Development | \f«————» 514
System 105 N 526 o
CURSOR
-«——»| CONTROL
- 506 DEVICE
!
oD
STATIC MEMORY f———— 916
SIGNAL
508 -¢—— | GENERATION
o DEVICE
NETWORK 518
INTERFACE |&— 4
DEVICE
DATA STORAGE DEVICE
MACHINE-READABLE
MEDUM [T
>
SOFTWARE /526
/— 520 4
Paa$S Development| 1
System 105

FIGURE 5

US 9,262,193 B2

1
MULTI-TIER PLATFORM-AS-A-SERVICE
DEPLOYMENT REDUCED TO SINGLE-TIER
ARCHITECTURE FOR DEVELOPMENT

TECHNICAL FIELD

The embodiments of the disclosure relate generally to plat-
form-as-a-service (PaaS) systems and, more specifically,
relate to a multi-tier PaaS deployment reduced to a single-tier
architecture for development.

BACKGROUND

Currently, a variety of Platform-as-a-Service (PaaS) ofter-
ings exist that include software and/or hardware facilities for
facilitating the execution of web applications in a cloud com-
puting environment (the “cloud”). Cloud computing is a com-
puting paradigm in which a customer pays a “cloud provider”
to execute a program on computer hardware owned and/or
controlled by the cloud provider. It is common for cloud
providers to make virtual machines hosted on its computer
hardware available to customers for this purpose.

The cloud provider typically provides an interface that a
customer can use to requisition virtual machines and associ-
ated resources such as processors, storage, and network ser-
vices, etc., as well as an interface a customer can use to install
and execute the customer’s program on the virtual machines
that the customer requisitions, together with additional soft-
ware on which the customer’s program depends. For some
such programs, this additional software can include software
components, such as a kernel and an operating system, and/or
middleware and a framework. Customers that have installed
and are executing their programs “in the cloud” typically
communicate with the executing program from remote geo-
graphic locations using Internet protocols.

PaaS offerings typically facilitate deployment of web
applications without the cost and complexity of buying and
managing the underlying hardware and software and provi-
sioning hosting capabilities, providing all of the facilities
required to support the complete life cycle of building and
delivering web application and service entirely available
from the Internet. Typically, these facilities operate as one or
more virtual machines (VMs) running on top of a hypervisor
in a host server.

A PaaS offering is generally a complicated product. For
example, some PaaS offerings run over multiple machines
when deployed in production. Accordingly, development of a
PaaS product can be a daunting task, as the PaaS product often
times operates over multiple tiers with a variety of inter-
related components and protocols. It can take time and
resources to bring a developer up to speed on the structure and
workings of the PaaS product. Furthermore, changes made to
one aspect of a PaaS product may effect a variety of other
aspects of the PaaS products, without a developer realizing
such an effect.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclosure
to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 is a block diagram of a network architecture sup-
porting a multi-tier PaaS deployment reduced to a single-tier
architecture for development according to an embodiment of
the disclosure;

10

20

30

35

40

45

50

55

2

FIG. 2 is ablock diagram depicting a virtual machine (VM)
executing an instance of PaaS development environment
according to an embodiment of the disclosure;

FIG. 3 is a flow diagram illustrating a method for using a
multi-tier PaaS deployment that is reduced to a single-tier
architecture for development purposes according to an
embodiment of the disclosure;

FIG. 4 is a flow diagram illustrating a method for patch-
based verification using a multi-tier PaaS deployment that is
reduced to a single-tier architecture according to an embodi-
ment of the disclosure; and

FIG. 5 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure provide for a multi-tier
platform-as-a-service (PaaS) deployment reduced to a single-
tier architecture for development. More specifically, a multi-
tier architecture of a PaaS product is combined and reduced
into a single-tier architecture that can be initialized ona single
virtual machine (VM). This is accomplished by maintaining a
separation of communication protocols between various tiers
of the PaaS product (e.g., broker layer, client layer, node
layer) via a networking stack boundary on the VM. A devel-
oper and/or programmer can then initialize this single-tier
architecture on a single VM for use in development and
testing of code changes to the PaaS product code base. Fur-
thermore, in some embodiments, the single-tier architecture
is utilized by a Continuous Integration (CI) system to auto-
matically test the code changes to the PaaS product using a
battery of tests, without any end user interaction.

In one embodiment, a method includes mapping multiple
tiers of a PaaS system to a consolidated environment execut-
able on a virtual machine (VM), wherein networking stacks
of'the VM maintain a separation between the multiple tiers in
the consolidated environment. The method also includes pro-
viding the consolidated environment as a development
instance of the PaaS system for execution on the VM, the
consolidated environment facilitating testing of code changes
to the PaaS system.

FIG. 1 is a block diagram of a network architecture 100
supporting a multi-tier PaaS deployment reduced to a single-
tier architecture for development according to an embodi-
ment of the disclosure. Network architecture 100 includes a
client device 110 communicating with a PaaS development
system 105 and a cloud provider system 160 over network
150. The network 150 may include, for example, the Internet
in one embodiment. In other embodiments, other networks,
wired and wireless, such as an intranet, local area network
(LAN), wide area network (WAN), or broadcast network may
be used.

The client device 110 may be any type of computing
device, for example, a device including a processor, a com-
puter-readable medium, and a memory. The client device 110
may be, for example, a personal computer, a laptop computer,
a tablet computer, a personal digital assistant (PDA), a cellu-
lar telephone, etc. In some embodiments, the client device
110 may be executing a browser application 114 or other
application adapted to communicate over Internet related
protocols (e.g., TCP/IP and HTTP) and/or display a user
interface. While only a single client device 110 is shown in
FIG. 1, network architecture 100 may support a large number
of concurrent sessions with many client devices 110.

In one embodiment, client device 110 includes an editor
application 112 (“editor”) that is used to edit source code of
computer programs. An end user of client device 110 may use

US 9,262,193 B2

3

editor 112 to make and submit code changes to source code of
a PaaS product. In one embodiment, the code changes are
provided to PaaS development system 105. PaaS develop-
ment system 105 is a collection of tools, which may be imple-
mented by any combination of hardware, software, and firm-
ware, that are used to build a PaaS product. For example, PaaS
development system 105 can include and may be imple-
mented on one or more computing devices including, but not
limited to, server devices, desktop computers, laptop comput-
ers, mobile devices, and so on.

In one embodiment, the PaaS product that is developed
using PaaS development system 105 is a multi-tenant PaaS
product hosted in a cloud computing environment. The term
“multi-tenant” refers to a feature of the PaaS product that
hosts multiple different web applications having multiple
different owners on a same virtual machine (VM) in the cloud
computing environment. In production, such a multi-tenant
PaaS product may execute utilizing multiple computing
devices to provide multiple tiers of the PaaS product, with a
variety of inter-related components and protocols. For
example, the multiple tiers of the PaaS product may include a
client layer hosting client tools to access the functionality of
the PaaS product, a broker layer having multiple broker
machines to coordinate and configure initialization of new
end user applications, a node layer including nodes (e.g., VM,
physical machine, etc.) to host the applications, messaging
servers, a data store of a database, a Domain Name Service
(DNS) server, and so on. As a result, development of the PaaS
product may be complicated for a programmer and/or a devel-
oper.

Embodiments of the invention reduce and combine the
multi-tier architecture of a multi-tenant PaaS product to a
single-tier architecture that can run on a single VM for use in
a development environment, such as PaaS development sys-
tem 105. The single-tier architecture may provide a stable
code base for the PaaS product that can be used by program-
mers in developing the PaaS product. A stable code base
refers to a version of the PaaS product source code that has
passed avariety of predetermined tests and has been approved
to not cause crashes or data loss. In embodiments of the
disclosure, the PaaS development environment stable code
base can be changed in response to programmer input speci-
fying code changes, and then an instance 125 of the PaaS
development environment stable code base can be launched
(e.g., inresponse to a programmer request) in order to test and
verify these code changes against the instance 125.

FIG. 2 is a block diagram depicting a VM 200 executing an
instance of PaaS development environment 205 according to
an embodiment of the disclosure. In one embodiment, VM
200 is the same as VM 165 of FIG. 1 and PaaS development
environment instance 205 is the same as PaaS development
environment instance 125 of FIG. 1. VM may be executed in
acloud provider system, such as cloud provider system 160 of
FIG. 1.

In one embodiment, PaaS development environment
instance 205 is initialized from a template image of a stable
code base for the PaaS product maintained in a repository
provided by a PaaS product provider. In some embodiment,
the repository may be kept in the cloud provider system. In
other embodiment, the repository may be maintained by the
PaaS provider outside of the cloud provider system, such as in
a Git repository.

As illustrated, PaaS development environment instance
205 reduces and combines the multiple tiers 210, 220, 230 of
a multi-tenant PaaS product to a single-tier architecture
executed by the VM 200. The multi-tenant PaaS product, in
one embodiment, includes a client layer 210, a broker layer

10

15

20

25

30

35

40

45

50

55

60

65

4

220, and anodelayer 230. In one embodiment, the client layer
210 provides an interface to a user of the PaaS product to a
broker layer 220 of the PaaS product. The broker layer 220
may, in turn, facilitate the creation and deployment (via bro-
ker Application Programming Interfaces (APIs) 225) of soft-
ware applications (e.g., web applications) being developed by
end users of the PaaS product. The node layer 230 initializes
and executes the software applications of the end users on one
or more nodes 235.

In one embodiment, the distributed environment of each of
the multiple tiers 210, 220, 230 is emulated in the single
machine of the VM 200 through use of networking stack
functionality of the VM 200. Each tier of the PaaS develop-
ment environment instance 205 is functionally separated
from the other tiers by a network stack boundary. The network
stack is the set of protocols used to communicate data
between two endpoints. As a result, each tier has knowledge
of the other tiers only via the local communications through
the network stack boundaries.

A variety of protocols may be implemented in the network
stack boundaries between the tiers 210, 220, 230. For
example, a HyperText Transport Protocol (HTTP) protocol
networking stack 240 may exist for communications between
the client layer 210 and the broker layer 220. A messaging-
based protocol network stack 250 may exist between the
broker layer 220 and the node layer 230. In one embodiment,
the messaging-based protocol is Advanced Message Queuing
Protocol (AMQP). In another embodiment, the messaging-
based protocol is Stream Text Oriented Messaging Protocol
(STOMP). In addition, a HTTP networking stack 260 or
Secure Shell (SSH) networking stack 260 may exist between
the client layer 210 and the node layer 230, which is used for
end user communications from the client layer 210 directly to
the node layer 230 once applications are established and
running on the nodes 235.

Ina production-level deployment of the PaaS product, each
node 235 is a VM with multiple applications associated with
different end users hosted on the VM. However, in the PaaS
development environment instance 205 of embodiments of
the disclosure, the nodes 235 are all running on the same VM
200 and are functionally separated by networking stack
boundaries.

Referring back to FIG. 1, in one embodiment, a program-
mer using editor 112 on client device 110 may make one or
more changes to the source code of'a PaaS product, which can
be synchronized and verified. To test y these code changes to
the PaaS product, an instance of PaaS development environ-
ment 125 that executes in a VM 165 provided by a cloud
provider system 160 can be launched automatically or in
response to a request of the programmer. Cloud provider
system 160 provides VMs, such as VM 165, hosted in cloud
160 on physical machines (not shown). The physical
machines are configured as part of the cloud 160, and are
often located in a data center. Users can interact with appli-
cations executing on the cloud-based VMs 165 using client
computer systems, such as client device 110, via a corre-
sponding web browser application 114.

Once the launch of the PaaS development environment
instance 125 is verified, the programmer may then access the
code base of the instance 125 to make his or her code changes
in editor 112. Then, the programmer may synchronize his or
her code changes out to the executing instance 125. To per-
form the synchronization, the code changes may be provided
to a build management system 124 of a development environ-
ment server 120 of PaaS development environment. In one
embodiment, the build management system 124 is a tool that
abstracts the steps of building software packages from the

US 9,262,193 B2

5

programmer. One example of a build management system
124 is Tito, which manages RPM Package Manager (RPM)-
based projects using Git as its source repository.

In one embodiment, the build management system 124
receives code changes and builds these changes into a correct
packaging format (e.g., RPM) to be installed on the PaaS
development environment instance 125. Packages are distri-
butions of software, applications, and data. Packages also
contain metadata, such as the software’s name, description of
its purpose, version number, vendor, checksum, and a list of
dependencies necessary for the software to run properly. The
build management system 124 may receive the code changes
after the programmer runs a command at the editor 112 that
causes the code changes to be sent to the build management
system 124.

The build management system 124 may include mapping
logic that allows the build management system 124 determine
the portions of the PaaS product code base that should be
rebuilt in light of the code changes, rather than rebuilding the
entire code base. The build management system 124 stan-
dardizes the matching of packaging components to the code
base of the PaaS product.

In one embodiment, the build management system 124 also
interacts with the package management system 122 to install
the built packages to corresponding locations in the code
base. The build management system 124 may abstract one or
more lower-level package management commands to be run
to install the built packages and pass those commands to the
package management system 122. Package management sys-
tem 122 is a collection of software tools to automate the
process of installing, upgrading, configuring, and removing
software packages for a computer’s OS in a consistent man-
ner. The package management system 122 may maintain a
database of software dependencies and version information
to prevent software mismatches and missing prerequisites. In
one embodiment, the package management tool 122 is RPM.
As a result, the programmer making and submitting the code
changes to the PaaS product may be unaware of which pack-
ages of the PaaS product code are affected by the code
changes and also does not have to directly rebuild and install
the PaaS product packages.

Once the package management system 122 installs the
built packages resulting from the code changes, PaaS devel-
opment environment instance 125 may be re-installed on VM
165. The programmer may then use the browser application
114 to verify whether the code changes affected the execution
of the PaaS development environment instance 125. This
provides a corresponding indication to the programmer of any
problems or issues the code changes may cause to the PaaS
product in the production-level environment.

Once a programmer has individually verified that his orher
code changes are acceptable and did not negatively affect the
PaaS development environment instance 125 launched for his
or her individual development purposes, the code changes
may then be submitted as a patch to be applied to a mainline
repository of the PaaS development system 105. The mainline
repositories include the code that a team of developers can
view and access, and that may potentially go into a next stable
build of the code base.

In one embodiment, the code changes are submitted as a
patch to the source code management system 130. Source
code management system 130 manages changes to source
code by logically organizing and controlling the revisions to
the source code into a source code repository 135. One
example of a source code management system 130 is Git
distributed version control system. A programmer intending
to send code changes to the Git source code management

15

25

40

45

50

6

system would submit a pull request to GitHub (a web-based
hosting service for Git source code management system). In
some embodiments, code changes may also be submitted via
different mechanisms, such as sending a patch to a mailing
list, or posting the patch to a message board, to name a few
examples.

Once the source code management system 130 receives the
patch with the code change, but prior to committing the code
changes to the source code repository 135, a continuous inte-
gration (CI) system 140 is initiated to launch a battery of tests
against the code changes. In one embodiment, the source code
management system 130 calls the CI system 140 to initiate.
The CI system 140 is a system that merges developer work-
spaces with a shared mainline at periodic intervals. In one
embodiment, the CI system 140 launches a PaaS development
environment instance 125 with the code changes synchro-
nized into the instance 125 (per the discussion above), and
then executes multiple tests against the instance 125 before
the code changes can be merged into the source code reposi-
tory 135. In one embodiment, the tests to run at the CI system
140 are configured by a system administrator of the PaaS
development system 105. The tests may be executed by the CI
system 140 without any human interaction.

In one embodiment, if the tests at the CI system 140 pass,
then the patch is merged into the mainline source code reposi-
tory 135 and a new PaaS development environment stable
code base is generated. This new stable code base is used for
future PaaS development environment instances 125. The
patch may also be provided to another level of testing, such as
a Quality Engineering team, which assesses readiness of the
code changes for production level deployment. [f atest fails at
the CI system 140, then the patch is rejected and goes back to
the programmer to determine what went wrong and provide a
fix.

In one embodiment, untrusted test or merge requests are
flagged by trusted users as testable or mergeable. This flag is
added after the last change to the pull request. If a change to
the pull request happens after CI system 140 testing starts, the
merge does not occur and, instead, the change is retested (as
long as there is a valid merge or test flag after the last commit).
In one embodiment, trusted users are maintained with GitHub
teams, where test/merge authority is given to particular
GitHub teams for particular repositories. For merging
changes, a queue of changes waiting to be merged may be
maintained, where the changes in the queue are merged in
serial. This provides stability to the master code base given
that no two conflicting code changes can be tested separately
and merged at the same time. Embodiments of the disclosure
may also support co-requisites of pull requests, so if there are
changes in multiple repositories that depend on each other
they can be testes and merged at the same time.

FIG. 3 is a flow diagram illustrating a method 300 for using
a multi-tier PaaS deployment that is reduced to a single-tier
architecture for development purposes according to an
embodiment of the disclosure. Method 300 may be performed
by processing logic that may comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), software (such as instructions run on a processing
device), firmware, or a combination thereof. In one embodi-
ment, method 300 is performed by a PaaS development envi-
ronment, such as PaaS development system 105 of FIG. 1.

Method 300 begins at block 310 where the tiers of a multi-
tier PaaS system are mapped to a single consolidated envi-
ronment that is executable on a single VM. In one embodi-
ment, the multiple tiers of the PaaS system are functionally
separated by networking stacks of the VM. For example, a
HTTP protocol networking stack may exist for communica-

US 9,262,193 B2

7

tions between a client layer and a broker layer of the PaaS
product. A messaging-based protocol network stack (e.g.,
AMQP or STOMP) may exist between the broker layer and a
node layer of the PaaS product. In addition, a HTTP network-
ing stack or SSH networking stack may exist between the
client layer and the node layer.

At block 320, the single consolidated environment is pro-
vided as a PaaS instance to execute on a VM. In one embodi-
ment, the PaaS instance is used by a programmer for devel-
opment of the PaaS product. The programmer may use a
browser application at a computing device of the programmer
to verify that the PaaS instance is initialized and executing.
Based on the executing behavior of the PaaS instance, the
program may decide to change the code of the PaaS instance.
Atblock 330, code changes to the PaaS instance are received.
In one embodiment, the programmer may use a source code
editor at his or her computing device to generate the code
changes.

Subsequently, at block 340, the code changes are synchro-
nized to the PaaS instance. In one embodiment, a build man-
agement system, such as Tito build management system, is
responsible for synchronizing the changes. In one embodi-
ment, the execution of the PaaS instance is stopped while the
build management system synchronizes the code changes.
Then, at block 350, packages of the PaaS instance that are
affected by the code change are identified. The build manage-
ment system may identify these packages by utilizing a map-
ping tool that correlates packages to corresponding sections
of code repository.

Atblock 360, the identified packages of the PaaS instance
are rebuilt. In one embodiment, the build management system
interacts with a package management system, such as RPM,
to perform the package rebuilding without any user (e.g.,
programmer, developer, system administrator) interaction.
Lastly, at block 370, the PaaS instance, now including the
rebuilt packages, is re-launched in the VM. In one embodi-
ment, the programmer may then verify, via his or her browser
application, that the PaaS instance is executing correctly with
the code changes implemented.

FIG. 4 is a flow diagram illustrating a method 400 for
patch-based verification using a multi-tier PaaS deployment
that is reduced to a single-tier architecture according to an
embodiment of the disclosure. Method 400 may be performed
by processing logic that may comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), software (such as instructions run on a processing
device), firmware, or a combination thereof. In one embodi-
ment, method 400 is performed by a PaaS development envi-
ronment, such as PaaS development system 105 of FIG. 1.

Method 400 begins at block 410 where a patch is received
that includes one or more code changes to a PaaS product. In
one embodiment, the patch is received by a source code
management system, such as Git source code management
system or GitHub source code management system. In some
embodiments, the patch is provided to the source code man-
agement system via a pull request. At block 420, a CI system
is initiated to test the received patch.

Atblock 430, a PaaS development environment instance is
launched in a single VM by the CI system, where the PaaS
development environment instance includes the one or more
code changes from the patch. In one embodiment, the PaaS
development environment instance includes multiple tiers of
the PaaS product, where the multiple tiers are functionally
separated by networking stacks of the VM. For example, a
HTTP protocol networking stack may exist for communica-
tions between a client layer and a broker layer of the PaaS
product. A messaging-based protocol network stack (e.g.,

20

25

40

45

55

8

AMQP or STOMP) may exist between the broker layer and a
node layer of the PaaS product. In addition, a HTTP network-
ing stack or SSH networking stack may exist between the
client layer and the node layer.

Subsequently, at block 440, the PaaS development envi-
ronment instance is tested using a plurality oftests configured
by the CI system. In one embodiment, the tests are selected by
a system administrator of the CI system. Then, at decision
block 450, it is determined whether any of the tests run by the
CI system failed. If one or more tests failed, then method 400
proceeds to block 460 where the patch is rejected and sent
back to the originating programmer for further development.
In some embodiments, details of the tests failed are provided
as feedback. If no tests failed at decision block 450, the
method 400 proceeds to block 470 where the patch is
accepted and added to a mainline PaaS product development
repository. In one embodiment, the repository is maintained
by the source code management system.

FIG. 5 illustrates a diagrammatic representation of a
machine in the example form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The computer system 500 includes a processing device
502, a main memory 504 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 518, which communicate with each other via a bus
530.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 502 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 502 is configured to execute
the processing logic 526 for performing the operations and
steps discussed herein.

The computer system 500 may further include a network
interface device 508 communicably coupled to a network
520. The computer system 500 also may include a video
display unit 510 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 512

US 9,262,193 B2

9

(e.g., akeyboard), a cursor control device 514 (e.g., a mouse),
and a signal generation device 516 (e.g., a speaker).

The data storage device 518 may include a machine-acces-
sible storage medium 524 on which is stored software 526
embodying any one or more of the methodologies of func-
tions described herein. The software 526 may also reside,
completely or at least partially, within the main memory 504
asinstructions 526 and/or within the processing device 502 as
processing logic 526 during execution thereof by the com-
puter system 500; the main memory 504 and the processing
device 502 also constituting machine-accessible storage
media.

The machine-readable storage medium 524 may also be
used to store instructions 526 to implement a PaaS develop-
ment environment 105 to provide a multi-tier PaaS deploy-
ment that is reduced to a single-tier architecture for develop-
ment purposes, such as the PaaS development environment
105 described with respect to FIG. 1, and/or a software library
containing methods that call the above applications. While
the machine-accessible storage medium 528 is shown in an
example embodiment to be a single medium, the term
“machine-accessible storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-accessible storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instruction for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the disclosure. The term “machine-acces-
sible storage medium” shall accordingly be taken to include,
but not be limited to, solid-state memories, and optical and
magnetic media.

In the foregoing description, numerous details are set forth.
It will be apparent, however, that the disclosure may be prac-
ticed without these specific details. In some instances, well-
known structures and devices are shown in block diagram
form, rather than in detail, in order to avoid obscuring the
disclosure.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “sending”, ”, “attaching”, “forwarding”, “cach-
”, “providing”,

receiving”,

ing”, “referencing”, “determining”, “mapping”,
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)

quantities within the computer system’s registers and memo-

2 <

10

15

20

25

30

35

40

45

50

55

60

65

10

ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

The disclosure also relates to an apparatus for performing
the operations herein. This apparatus may be specially con-
structed for the required purposes, or it may comprise a gen-
eral purpose computer selectively activated or reconfigured
by a computer program stored in the computer. Such a com-
puter program may be stored in a machine readable storage
medium, such as, but not limited to, any type of disk including
floppy disks, optical disks, CD-ROMs, and magnetic-optical
disks, read-only memories (ROMs), random access memo-
ries (RAMs), EPROMs, EEPROMs, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions, each coupled to a computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, the disclosure is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the disclosure as
described herein.

The disclosure may be provided as a computer program
product, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the disclosure. A
machine-readable medium includes any mechanism for stor-
ing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
(e.g., computer-readable) medium includes a machine (e.g., a
computer) readable storage medium (e.g., read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.), etc.

Whereas many alterations and modifications of the disclo-
sure will no doubt become apparent to a person of ordinary
skill in the art after having read the foregoing description, it is
to be understood that any particular embodiment shown and
described by way of illustration is in no way intended to be
considered limiting. Therefore, references to details of vari-
ous embodiments are not intended to limit the scope of the
claims, which in themselves recite only those features
regarded as the disclosure.

What is claimed is:

1. A method, comprising:

mapping, by a processing device, multiple tiers of a Plat-

form-as-a-Service (PaaS) system to a consolidated envi-
ronment executable on a virtual machine (VM), wherein
networking stacks of the VM maintain a separation
between the multiple tiers in the consolidated environ-
ment;

providing, by the processing device, the consolidated envi-

ronment as a development instance of the PaaS system
for execution on the VM, the consolidated environment
facilitating testing of code changes to the PaaS system in
view of a source code repository;

identifying, in view of a correlation between one or more

packages and a section of the source code repository, a
package of the development instance of the PaaS system
that is affected by the code changes; and

US 9,262,193 B2

11

in view of an identification of the package of the develop-
ment instance of the PaaS system that is affected by the
code changes, rebuilding the package.

2. The method of claim 1, wherein the multiple tiers com-
prise a client tier, a broker tier, and a node tier, and wherein the
PaaS system is a multi-tenant PaaS system that hosts a plu-
rality of tenants on a same node.

3. The method of claim 2, wherein the networking stacks
comprise a HyperText Transport Protocol (HTTP) network-
ing stack between the client tier and the broker tier, a mes-
saging-based protocol networking stack between the broker
tier and the node tier, and a Secure Shell (SSH) networking
stack between the client tier and the node tier.

4. The method of claim 1, further comprising receiving the
code changes to a code base of the consolidated environment
from the programmer.

5. The method of claim 4, further comprising integrating
the received code changes into one or more packages of the
consolidated environment and installing the integrated pack-
ages as a rebuilt consolidated environment on the VM.

6. The method of claim 5, wherein the integrating the
received code changes further comprising rebuilding only the
packages of the consolidated environment that are affected by
the received code changes.

7. The method of claim 1, wherein the code changes are
provided as a patch to a continuous integration (CI) system
that utilizes the consolidated environment executed in the VM
to automatically test the code changes without interaction
from an end user.

8. The method of claim 7, wherein the patch is provided to
the CI environment as a pull request using a GitHub source
code management system.

9. A system, comprising:

a memory;

aprocessing device operatively coupled to the memory, the

processing device to:

map multiple tiers of a Platform-as-a-Service (PaaS) sys-

tem to a consolidated environment executable on a vir-
tual machine (VM), wherein networking stacks of the
VM maintain a separation between the multiple tiers in
the consolidated environment;

provide the consolidated environment as a development

instance of the PaaS system for execution on the VM, the
consolidated environment to facilitate testing of code
changes to the PaaS system in view of a source code
repository;

identify, in view of a correlation between one or more

packages and a section of the source code repository, a
package of the development instance of the PaaS system
that is affected by the code changes; and

in view of an identification of the package of the develop-

ment instance of the PaaS system that is affected by the
code changes, rebuild the package.

10. The system of claim 9, wherein the multiple tiers com-
prise a client tier, a broker tier, and a node tier, and wherein the
PaaS system is a multi-tenant PaaS system that hosts a plu-
rality of tenants on a same node.

11. The system of claim 10, wherein the networking stacks
comprise a HyperText Transport Protocol (HTTP) network-
ing stack between the client tier and the broker tier, a mes-
saging-based protocol networking stack between the broker
tier and the node tier, and a Secure Shell (SSH) networking
stack between the client tier and the node tier.

10

15

20

25

30

35

40

45

50

55

60

12

12. The system of claim 9, wherein the PaaS development
system comprises a build management system to integrate the
code changes into one or more packages of the consolidated
environment and install the integrated packages as a rebuilt
consolidated environment on the VM.

13. The system of claim 12, wherein the integrating the
code changes further comprising rebuilding only the pack-
ages of the consolidated environment that are affected by the
code changes.

14. The system of claim 9, wherein the code changes are
provided as a patch to a continuous integration (CI) system
that utilizes the consolidated environment executed in the VM
to automatically test the received code changes without inter-
action from an end user.

15. The system of claim 14, wherein the patch is provided
to the Cl environment as a pull request using a GitHub source
code management system.

16. A non-transitory machine-readable storage medium
comprising instructions that, when accessed by a processing
device, cause the processing device to:

map, by the processing device, multiple tiers of a Platform-

as-a-Service (PaaS) system to a consolidated environ-
ment executable on a virtual machine (VM), wherein
networking stacks of the VM maintain a separation
between the multiple tiers in the consolidated environ-
ment; and

provide, by the processing device, the consolidated envi-

ronment as a development instance of the PaaS system
for execution on the VM, the consolidated environment
to facilitate testing of code changes to the PaaS system in
view of a source code repository;

identify, in view of a correlation between one or more

packages and a section of the source code repository, a
package of the development instance of the PaaS system
that is affected by the code changes; and

in view of an identification of the package of the develop-

ment instance of the PaaS system that is affected by the
code changes, rebuild the package.

17. The non-transitory machine-readable storage medium
of claim 16, wherein the multiple tiers comprise a client tier,
a broker tier, and a node tier, and wherein the PaaS system is
a multi-tenant PaaS system that hosts a plurality of tenants on
a same node.

18. The non-transitory machine-readable storage medium
of claim 17, wherein the networking stacks comprise a
HyperText Transport Protocol (HTTP) networking stack
between the client tier and the broker tier, a messaging-based
protocol networking stack between the broker tier and the
node tier, and a Secure Shell (SSH) networking stack between
the client tier and the node tier.

19. The non-transitory machine-readable storage medium
of claim 16, wherein the processing device is further to:

integrate the code changes into one or more packages ofthe

consolidated environment; and

install the integrated packages as a rebuilt consolidated

environment on the VM.

20. The non-transitory machine-readable storage medium
of'claim 16, wherein the code changes are provided as a patch
to a continuous integration (CI) system that utilizes the con-
solidated environment executed in the VM to automatically
test the code changes without interaction from an end user.

#* #* #* #* #*

